MICROARRAY GENE EXPRESSION DATA WITH LINKED SURVIVAL PHENOTYPES: Diffuse Large-B-Cell Lymphoma Revisited

Mark Segal
University of California, San Francisco
Outline

• Survival phenotypes
• Diffuse large-B-cell lymphoma
• Analytic methods:
 • gene harvesting
 • penalized proportional hazards
 • assessing predictive performance
• Conclusions
Phenotypes

• None -- clustering, unsupervised analyses
• Categoric -- classification / discrimination
• Continuous -- regression
• Survival -- time-to-event outcome subject to (right) censoring
thyroxine-binding globulin precursor expression

Survival (years)

coef exp(coef) se(coef) z p
thyroxine-binding -0.202 0.817 0.0435 -4.65 2.3e-06

Rsquare= 0.093 (max possible= 0.997)

Score (logrank) test = 22.4 on 1 df, p=2.27e-06
Diffuse Large B Cell Lymphoma

- Aggressive malignancy of mature B lymphocytes.
- Most common type of lymphoma in adults.
 - Annual US incidence exceeds 25,000 cases.
 - 40% of non-Hodgkins lymphoma cases.
- Despite treatment advances less than 50% of patients achieve lasting remission.
- Clinical features modest predictors of response.
Diffuse Large B Cell Lymphoma

- The combination of lack of good clinical predictors of survival outcomes and underlying disease heterogeneity spawned several microarrays studies of DLBCL.

- Objective: devise a molecular profile that predicts survival and can be used for therapy evaluation / selection.
Diffuse Large B Cell Lymphoma

- Alizadeh et al., *Nature*, 2000
 - lymphochip / unsupervised / subtypes.
- Shipp et al., *Nature Medicine*, 2002
 - Affy HU6800 / supervised - binary outcome.
- Wright et al., *PNAS*, 2002
 - reconcile the above / compound covariates.
- Lossos et al., *NEJM*, 2004
 - RT-PCR / Cox PH / 6 gene predictor.
Diffuse Large B Cell Lymphoma

- Rosenwald et al., *NEJM*, 2002
- ‘Lymphochip’ cDNA microarray composed of genes expressed in lymphoid cells and/or implicated in cancer, immune function
- Here 7399 features representing 4128 genes
- Survival (from chemotherapy) obtained for 240 patients partitioned into training (160) and validation (80) datasets
• Hierarchical clustering of expression data used to identify ‘signatures’ -- by inspection -- ‘fluid’
• uses training and test datasets
• tight clustering: Tseng Wong; *Biometrics*, 2004
• Univariate Cox proportional hazards was used to identify significant genes
• Where possible these genes were assigned to the previously identified signatures
• Signature averages used in multivariate PH model
• At best, poor-man’s gene harvesting
Gene Harvesting

- Hastie et al., *Genome Biology*, 2001
- Pertains to survival and other outcomes
- Seeks to avoid “lists of genes” results
- GoMiner, MAPPFinder, EASE, ...
- Can be prone to artifactual solutions: Segal et al., *J Computational Biology* 2003
1. Cluster genes using hierarchical clustering

2. Get average expression profiles from all $p - 1$ clusters: these serve as covariates in addition to the p individual genes

3. Use of clusters as covariates biases toward correlated sets of genes; reduces overfitting

4. Forward stepwise algorithm up to a prescribed number of terms

5. Provision for interactions with included terms

6. Model choice by cross-validation (??)
Clustering genes

Let $p =$ number of genes.
Perform hierarchical clustering which will produce $(2p-1)$ clusters of genes.

E.g. $p=5$

Cluster 6=$(1,2)$
Cluster 7=$(1,2,3)$
Cluster 8=$(4,5)$
Cluster 9= $(1,2,3,4,5)$
>harvest(clust.aves, expr.mat, y = survtime, ic = status, method = "survival", alpha = 0.1, maxterms = 6)

Adding term= 1 (Node) = 3498 Size= 14 Score= 3.827
Adding term= 2 (Node) = 3383 Size= 9 Score= 3.062
Adding term= 3 (Node) = 2357 Size= 2 Score= 3.610
Adding term= 4 (Node) = -5730 Size= 1 Score= 3.342
Adding term= 5 (Node) = 3450 Size= 2 Score= 2.758
Adding term= 6 (Node) = 6223 Size= 4 Score= 2.470

`alpha` biases toward selecting clusters

Score moderated z statistic

3498 contains exclusively MHC class II genes:

all DP alpha, DR alpha, DR beta, DP beta

none DM alpha, DQ alpha, DM beta, DQ beta

MHC class II foremost amongst the four chosen signatures
- Artifactual solutions arise when clusters are not tight and cluster average associates with outcome.

While not an issue we have biased toward selecting (larger) clusters.
• When we turn this off ($alpha = 0$) only singletons (original genes) are selected.

• At this juncture it becomes apt to consider refinements to forward stepwise approaches.

• The $p \gg n$ microarray setting warrants some form of regularization: cf DLDA.
Lasso Regression

- Tibshirani *JRSSB*, 1996

- L_1 penalty on coefficients captures good features of ridge (*prediction accuracy*) and subset (*interpretation*) regression:

$$
\min_\beta \sum_{i=1}^n \left(y_i - \sum_{j=1}^p \beta_j x_{ij} \right)^2 + \lambda \sum_{j=1}^p |\beta_j|
$$

coefficients often exactly zero cf selection
• Has been extended to Cox PH.

• Estimation/computational problems in microarray settings.

• These can be solved by
 (i) use of least angle regression (LARS), and
 (ii) use of residual-based approximations.
- Top genes selected by direct or approximate methods **coincide** -- first 4 genes (CV) selected:

 - **X00452**: MHC class II, DQ alpha 1
 MHC signature

 - **AA805575**: thyroxine-binding globulin precursor
 Germinal-center B-cell signature

 - **X59812**: cytochrome P450, subfamily
 Lymph-node signature

 - **LC_29222**: *Lymph-node signature* [not on Hu6800]
Predictive Performance

- Risk scores based on fitted model computed for patients in (withheld) test dataset.
- Low/High risk strata created by thresholding.
- Statistical testing of between strata differences.
- Many limitations: arbitrariness of stratification, p-values don’t capture explained variation.
<table>
<thead>
<tr>
<th>Method</th>
<th>#{high risk}</th>
<th>log-rank p</th>
<th>Rsquared</th>
</tr>
</thead>
<tbody>
<tr>
<td>L1 Penalized Cox PH</td>
<td>36</td>
<td>0.0004</td>
<td>0.138</td>
</tr>
<tr>
<td>Harvesting -- MHC Class II</td>
<td>41</td>
<td>0.33</td>
<td>0.012</td>
</tr>
<tr>
<td>Lossos -- 6 Gene Model</td>
<td>42</td>
<td>0.0136</td>
<td>0.074</td>
</tr>
<tr>
<td>Rosenwald -- Signatures</td>
<td>32</td>
<td>0.0005</td>
<td>0.128</td>
</tr>
</tbody>
</table>
Lymphochip --- Test Data

- L1 Penalized Cox PH
- Lossos --- 6 Gene Model
- Rosenwald --- Signatures
- Harvesting --- MHC Class II
Conclusions

• Gene harvesting formalizes *ad hoc* approaches based on clustering

• Can be prone to artifact; too greedy

• L_1 penalized Cox proportional hazards avoids greediness and, for DLBCL, exhibits relatively good predictive performance

• LARS / devices make computationally viable
Conclusions

- More refined methods for evaluating predictive performance warranted
- Time-dependent ROC curves have merit
- Molecular profiling of DLBCL provides only modest prediction of post therapy survival